Compositions of Multiple Control Barrier Functions Under Input Constraints

2023 American Control Conference San Diego, California, USA, 2 June 2023

Joseph Breeden, Dimitra Panagou

Departments of Aerospace Engineering and Robotics University of Michigan, Ann Arbor, MI, USA

Introduction - Control Barrier Functions

- Control Barrier Functions (CBFs) [1] are a tool for set invariance
- General formulation
 - Let $x\in \mathbb{R}^n, u\in \mathcal{U}\subset \mathbb{R}^m$ where $\,\mathcal{U}$ is compact
 - Control-affine system: $\dot{x} = f(x) + g(x)u$
 - A function $h : \mathbb{R}^n \to \mathbb{R}$ is a CBF if there exists a class- \mathcal{K} function $\alpha : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ such that
 - $\inf_{u \in \mathcal{U}} \nabla h(x) (f(x) + g(x)u) \le \alpha(-h(x))$

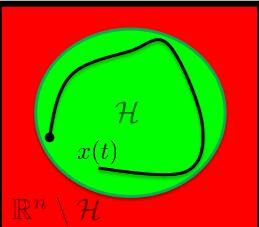
for all $x \in \frac{\mathcal{H}}{\mathcal{H}} \triangleq \{x \in \mathbb{R}^n \mid h(x) \leq 0\}$.

– Given a CBF, the condition

 $\nabla h(x)(f(x) + g(x)u) \leq \alpha(-h(x))$

is sufficient to render the trajectory $\,x(t)\,$ always inside $\,\mathcal{H}$.

[1] Ames et al, "Control barrier functions: Theory and applications", ECC 2019

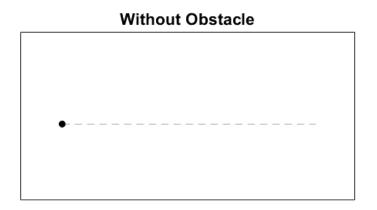


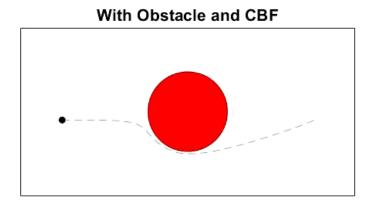
Introduction - Control Barrier Functions

• CBFs are commonly implemented via online modifications of a nominal control law using the quadratic program

$$u = \underset{u \in \mathcal{U}}{\operatorname{arg\,min}} \|u - u_{\operatorname{nom}}(x)\|_{2}^{2}$$

such that $\nabla h(x)(f(x) + g(x)u) \le \alpha(-h(x))$





The Problem

- Generally, systems operate with multiple constraints
- Multiple constraints $\{h_k\}_{k=1}^M$ can be handled by either
 - Developing a consolidated CBF h_c as a smooth maximum of $\{h_k\}_{k=1}^M$ (or other consolidation method) [1]

$$u = \underset{u \in \mathcal{U}}{\operatorname{arg\,min}} \|u - u_{\operatorname{nom}}(x)\|_{2}^{2}$$

such that $\nabla h_c(x)(f(x) + g(x)u \le \alpha(-h_c(x)))$

Applying multiple CBFs at once in a QP [2]

$$u = \underset{u \in \mathcal{U}}{\operatorname{arg\,min}} \|u - u_{\operatorname{nom}}(x)\|_{2}^{2}$$

such that $\nabla h_k(x)(f(x) + g(x)u \le \alpha(-h_k(x)), \forall k = 1, \cdots, N$

• Both strategies are difficult to verify when $\mathcal U$ is bounded

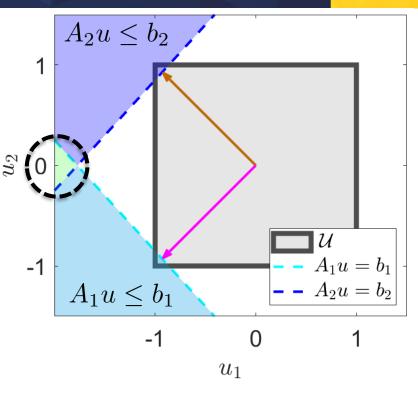
Black and Panagou, "Adaptation for validation of a consolidated control barrier function based control synthesis", arXiv 2022
 Tan and Dimarogonas, "Compatibility checking of multiple control barrier functions for input constrained systems", CDC 2022

The Problem - Example

- Suppose two CBFs h_1, h_2
- Suppose a control set \mathcal{U}
- Suppose a state $x \in \mathcal{H}_1 \cap \mathcal{H}_2$
- This leads to two CBF conditions

$$\underbrace{\nabla h_1(x)g(x)}_{=A_1} u \leq \underbrace{\alpha_1(-h_1(x)) - \nabla h_1(x)f(x)}_{=b_1}$$
$$\underbrace{\nabla h_2(x)g(x)}_{=A_2} u \leq \underbrace{\alpha_2(-h_2(x)) - \nabla h_2(x)f(x)}_{=b_2}$$

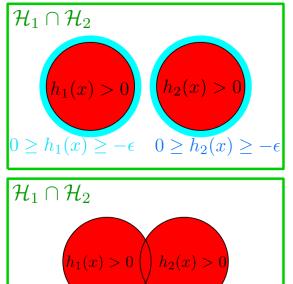
• The conditions are individually feasible but not jointly feasible



Narrower Problem

- Question 1: Do $\partial \mathcal{H}_i$ and $\partial \mathcal{H}_j$ intersect for some i, j?
 - No
 - Then treat each CBF individually in a neighborhood of its zero sublevel set [1]

- Keep reading
- This happens with most relative-degree 2 constraints



Narrower Problem

• Question 2: Is $\bigcap_{k=1}^{M} \mathcal{H}_k$ a viability domain (controlled-invariant set)? – Yes

Proposition ([1, Thm. 1]). Let $\{h_k\}_{k=1}^M$ be CBFs and let $\mathcal{A} = \bigcap_{k=1}^M \mathcal{H}_k$ be a viability domain. Then the controller

$$\begin{aligned} u &= \underset{u \in \mathcal{U}, \delta_k \ge 1}{\operatorname{arg\,min}} \|u - u_{\operatorname{nom}}(t, x)\|_2^2 + \sum_{k=1}^n J_k \delta_k \\ &\quad \text{such that } \nabla h_k(x)(f(x) + g(x)u) \le \frac{\delta_k}{\delta_k} \alpha_k(-h_k(x)), \, \forall k = 1, \cdots, M \\ &\quad \text{where } J_k > 0, \, \text{is feasible at every point } x \in \mathcal{A}. \end{aligned}$$

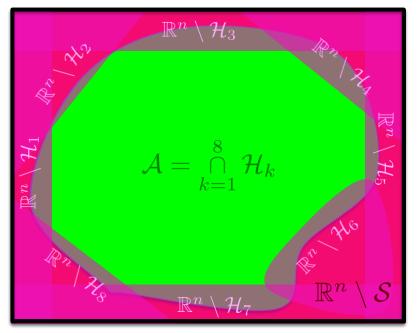
– No

- This paper seeks tools to modify the CBFs $\{h_k\}_{k=1}^M$ so as to recover a controlled-invariant set

[1] Zeng et al., "Safety-critical control using optimal-decay control barrier function with guaranteed pointwise feasibility", ACC 2021

Problem Formulation

- Goal: Find a controlled-invariant subset ${\mathcal A}$ of a specified set ${\mathcal S}$
- Tool: CBFs
 - We seek to express \mathcal{A} using some number of CBFs $\mathcal{A} = \bigcap_{k=1}^{M} \mathcal{H}_k$ so that so we can use the QP control law on the prior slide
- Overview
 - Strategy 1 geometry, formal guarantees
 - Strategy 2 algorithm/heuristic



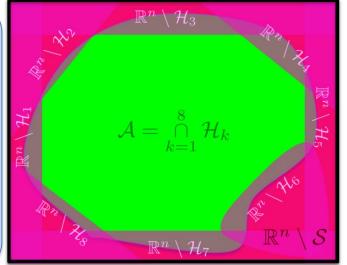
where each h_k is a CBF

Control Barrier Functions

Definition. Let $\mathcal{X} \subseteq \mathcal{S}$ and $\mathcal{Y} \subseteq \mathcal{U}$. A continuously differentiable function $h : \mathbb{R}^n \to \mathbb{R}$ is a Control Barrier Function (CBF) for $(\mathcal{X}, \mathcal{Y})$ if there exists $\alpha \in \mathcal{K}$ such that

$$\inf_{u \in \mathcal{Y}} \nabla h(x) (f(x) + g(x)u) \le \alpha(-h(x))$$

for all $x \in \mathcal{H} \cap \mathcal{X}$.

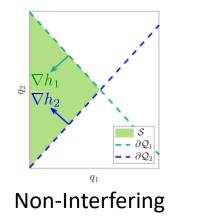


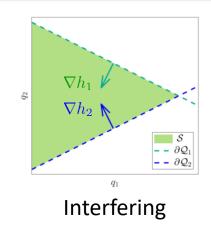
• We use \mathcal{X} in place of \mathcal{S} to keep track of how we will gradually restrict \mathcal{S} to a smaller set $\mathcal{X}_k = \mathcal{X}_{k-1} \cap \mathcal{H}_{k-1}, \mathcal{X}_0 = \mathcal{S}$ each time that we add a CBF

Definition. Two CBFs h_i and h_j are called non-interfering on a set $\mathcal{X} \subset \mathcal{S}$ if $(\nabla h_i(x)g(x)) \cdot (\nabla h_j(x)g(x)) \ge 0$ for all $x \in \mathcal{X}$.

A set of CBFs $\{h_k\}_{k=1}^M$ is call non-interfering if every pair of CBFs is non-interfering.

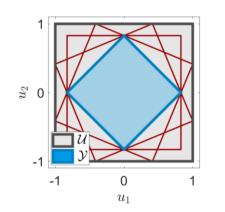
- Example
 - Suppose g is the identity matrix

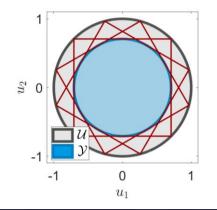


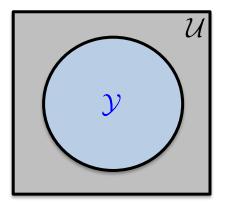


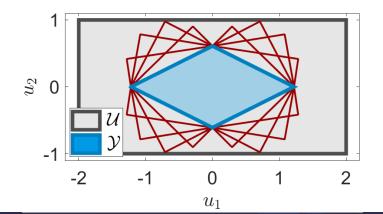
Result 1: Quadrant Extension Property

- Let \mathcal{Y} be a subset of \mathcal{U} that possesses the "quadrant extension property (QEP)"
 - See paper for definition and for a second similar property
- Design CBFs one-at-a-time for the smaller control set ${\cal Y}$ and compute the QP over all of $\,{\cal U}$







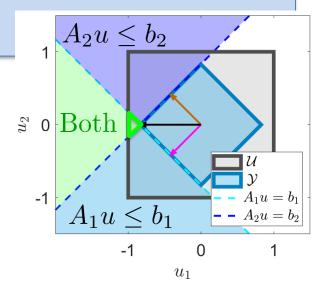


Theorem. Let \mathcal{Y} be any set with the QEP w.r.t \mathcal{U} . Let $\{h_k\}_{k=1}^M$ each be a CBF for $(\mathcal{X}, \mathcal{Y})$ with $\alpha_k \in \mathcal{K}$. If $\{h_k\}_{k=1}^M$ are non-interfering, then the set

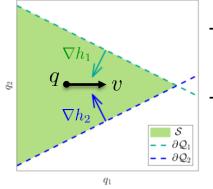
 $\boldsymbol{\mu}_{\text{all}}(x) \triangleq \{ u \in \mathcal{U} \mid \nabla h_k(x)(f(x) + g(x)u) \le \alpha_k(-h_k(x)), \forall k = 1, \cdots, M \}$

is nonempty for all $x \in \mathcal{X} \cap (\cap_{k=1}^{M} \mathcal{H}_k)$.

• That is, if we design our CBFs for the smaller set of controls \mathcal{Y} , then the CBFs will all be feasible together over the complete set of controls \mathcal{U}

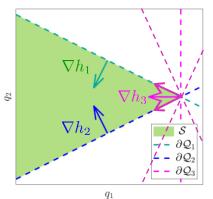


Result 2: Interfering CBFs Strategy



- Left: Position-space $q \in \mathbb{R}^2$ of a double integrator $\dot{q} = v, \dot{v} = u$
- Because the CBFs are interfering, they may allow an agent to gain excessive velocity in the direction of their intersection

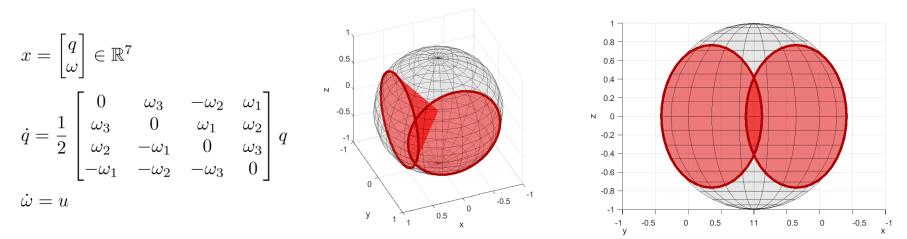
• Strategy: Add a CBF



We can solve this by adding an additional CBF to limit the agent velocity in that direction

Result 2: Interfering CBFs Example

- See paper for the complete algorithm for adding CBFs
- Example:
 - 3D orientation space with two constraints

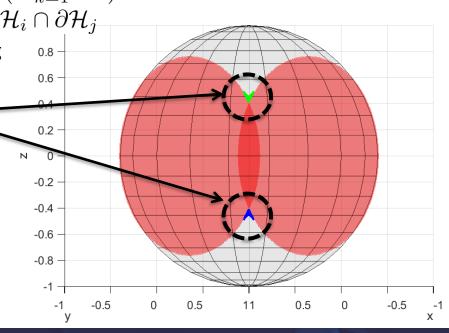


- Red cones are unsafe states, S is the rest of the gray sphere
- These two constraints intersect at a "sharp" angle and therefore are interfering

Result 2: Interfering CBFs Example

Alg-1) Identify points of conflict

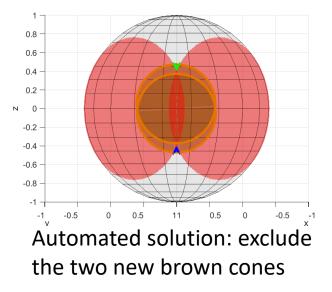
- We only need to look for points
 - 1. In the current working set $\mathcal{X} = \mathcal{S} \cap \left(\cap_{k=1}^{M} \mathcal{H}_k
 ight)$
 - 2. In the boundary of at least two sets $\partial \mathcal{H}_i \cap \partial \mathcal{H}_j$
 - 3. Where the CBFs h_i, h_j are interfering $(\nabla h_i(x)g(x)) \cdot (\nabla h_j(x)g(x)) < 0$
- There are two clusters of points \Box in $\mathcal X$ where conflicts occur

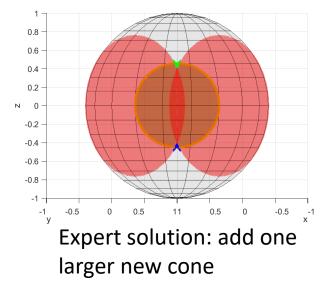


Result 2: Interfering CBFs Example

Alg-2) Remove clusters using additional CBFs

- This requires a method to produce CBFs, which will be problem-specific





Alg-3) Check for conflicts again (with the new CBFs) and repeat as necessary

Conclusions

- We have presented tools for the construction of controlled-invariant sets defined using intersections of CBF sets
 - We first presented conditions for a set of non-interfering CBFs to form a controlledinvariant set
 - We then sketched an algorithm to add CBFs when the initial CBFs are interfering
- This consists entirely of offline analysis to find a controlled-invariant set as opposed to online adaptation/learning approaches
- Open questions
 - How to perform similar design for systems with disturbances
 - Can one write a general form for the added CBFs instead of having tools specific to a particular system (e.g. the cones in the presented example)
 - How to guarantee convergence of the algorithm

Thank You To Our Sponsors

Compositions of Multiple Control Barrier Functions Under Input Constraints

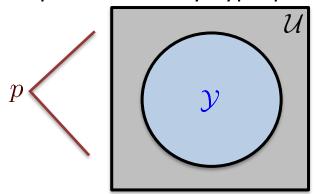
2023 American Control Conference San Diego, California, USA, 2 June 2023

Joseph Breeden, Dimitra Panagou

Departments of Aerospace Engineering and Robotics University of Michigan, Ann Arbor, MI, USA

Backup - Result 1: Quadrant Extension Property

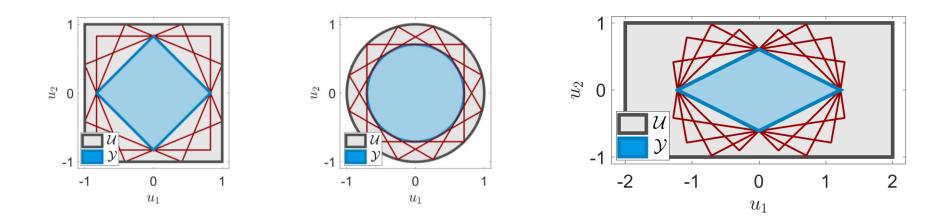
- Given a set of controls $\,\mathcal{Y} \subset \mathcal{U} \subset \mathbb{R}^m$
- Draw m orthogonal hyperplanes that meet at a point $p \in \mathbb{R}^m$
- Require that every hyperplane contain at least one point in ${\mathcal Y}$



Definition. The set $\mathcal{Y} \subset \mathcal{U}$ is said to possess the quadrant extension property (QEP) w.r.t. \mathcal{U} if the point p lies in \mathcal{U} for any combination of m hyperplanes satisfying the above construction.

Backup - Result 1: Quadrant Extension Property

• Examples:



Definition. The set $\mathcal{Y} \subset \mathcal{U}$ is said to possess the quadrant extension property (QEP) w.r.t. \mathcal{U} if the point p lies in \mathcal{U} for any combination of m hyperplanes satisfying the above construction.